

1] What is the pH of the solution prepared by mixing 25 mL of 0.024 M HF with 15 mL of 0.15 $\mathrm{M} \mathrm{NaF} ? \mathrm{Ka}(\mathrm{HF})=1.5 \times 10^{-4}$
a) 4.39
b) 7.00
c) 7.39
d) 4.03
e) 2.97

2] Determine the pH of 0.15 M benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right) \mathrm{Ka}$ (benzoic acid) $=7 \times 10^{-3}$
a) 2.06
b) 1.49
c) 4.22
d) 7.00
e) 3.11

3] Calculate the pH at the halfway point for the titration of 100 mL of 0.1 M ethylamine $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{~Kb}=4.2 \times 10^{-4}\right)$ against 0.2 M nitric acid $\left(\mathrm{HNO}_{3}\right)$.
a) 7.00
b) 8.8
c) 10.6
d) 11.9
e) 9.7

4] If 10 mL of 0.2 M NaOH is added to 20 mL of 0.25 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Ka}=1.8 \times 10^{-5}\right)$, what is the pH of the resultant solution?
a) 4.56
b) 5.34
c) 3.22
d) 11.67
e) 6.12

5] For the reaction: $2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow 4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ at $600^{\circ} \mathrm{C} \quad \mathrm{Kp}=18.0 \mathrm{~atm}$.
A system contains $2.0 \mathrm{~atm} \mathrm{Cl}_{2}(\mathrm{~g}), 2.0 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), 4.0 \mathrm{~atm} \mathrm{HCl}(\mathrm{g})$, and $1.0 \mathrm{~atm} \mathrm{O}_{2}(\mathrm{~g})$ at $600^{\circ} \mathrm{C}$. Which one of the following statements is correct?
a) Net reaction will occur from left to right
b) $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}$. RT
c) Net reaction will occur from right to left
d) No net forward or reverse reaction will occur

6] The solubility of magnesium carbonate $\left(\mathrm{MgCO}_{3}\right)$ in water at $20^{\circ} \mathrm{C}$ is $0.0089 \mathrm{~mol} / \mathrm{l}$, calculate Ksp for the salt.
a) 4.1×10^{-4}
b) 5.6×10^{-6}
c) 7.9×10^{-5}
d) 2.9×10^{-6}
e) 7.8×10^{-9}

7] What mass of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{MM}=53.5 \mathrm{~g} / \mathrm{mol})$ must be added to 0.5 L of $0.45 \mathrm{M} \mathrm{NH}_{3}$ to prepare a buffer solution with pH of 10.55 ? Assume no variation of volume, $\mathrm{Kb}\left(\mathrm{NH}_{3}\right)=1.4 \times 10^{-4}$
a) 9.4 g
b) 4.7 g
c) 3.5 g
d) 7.6 g
e) 6.2 g

8] Imagine that the temperature is decreased for the following equilibrium

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{SO}_{3} \quad \Delta \mathrm{H}>0 \text { endothermic }
$$

What effect would be expected?
a) No shift in the equilibrium occurs
b) The equilibrium shifts to the right
c) The equilibrium shifts to the left
d) No enough information to answer

9] In a titration, 20 mL of HCl requires 32 mL of $0.5 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ for complete neutralization. Calculate the molar concentration of acid.
a) 0.64 M
b) 1.6 M
c) 1.92 M
d) 3.20 M
e) 1.60 M

10] Predict whether an aqueous solution of $\mathrm{NH}_{4} \mathrm{~F}$ is
$\mathrm{Ka}(\mathrm{HF})=3.5 \times 10^{-4}, \mathrm{~Kb}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$

a) acidic

b) basic
c) neutral
d) no enough information to answer

11] $\mathrm{Kp}=3.1 \times 10^{-8}$ for $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$, what is the equilibrium partial pressure of S_{2} if $\mathrm{H}_{2} \mathrm{~S}$, initially at 0.5 atm and H_{2}, initially at 0.01 atm , are allowed to come to equilibrium?
a) 8.8×10^{-3}
b) 1.3×10^{-3}
c) 7.75×10^{-5}
d) 3.1×10^{-6}
e) 2.85×10^{-4}

12] Consider the reaction: $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Which of the following causes the equilibrium shown to shift to reverse (left) direction?

a) removal of CH_{4}

b) removal $\mathrm{H}_{2} \mathrm{O}$
c) addition of CH_{4}
d) decreasing the volume of the container
e) none of these

13] The percent dissociation is 4.45% in a 1 M solution of ethylamine $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, calculate Kb ?
a) 7.4×10^{-4}
b) 6.3×10^{-5}
c) 2.1×10^{-3}
d) 3.6×10^{-6}
e) 5.7×10^{-4}

14] What is the solubility of BaF_{2} in $0.15 \mathrm{M} \mathrm{NaF} . \mathrm{Ksp}\left(\mathrm{BaF}_{2}\right)=1.7 \times 10^{-6}$
a) 1.7×10^{-6}
b) 2.7×10^{-5}
c) 6.8×10^{-6}
d) 1.3×10^{-3}
e) 7.56×10^{-5}

15] A reaction mixture was prepared by mixing $0.2 \mathrm{~mol} \mathrm{SO}_{2}, 0.2 \mathrm{~mol} \mathrm{NO}_{2}, 0.15 \mathrm{~mol} \mathrm{NO}$ and $0.15 \mathrm{~mol} \mathrm{SO}_{3}$ in a 5 litre reaction vessel. At $260^{\circ} \mathrm{C}, \mathrm{Kp}=0.25$ for

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{SO}_{3}(\mathrm{~g})
$$

What is the equilibrium concentration of SO_{2} ?
a) $\left[\mathrm{SO}_{2}\right]=\mathbf{0 . 0 4 6 6}$
b) $\left[\mathrm{SO}_{2}\right]=0.0366$
c) $\left[\mathrm{SO}_{2}\right]=0.233$
d) $\left[\mathrm{SO}_{2}\right]=0.175$
e) $\left[\mathrm{SO}_{2}\right]=0.2$

Bonus:

Which equation correctly describes the relationship between Kp and Kc for the following reaction?

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}),
$$

a) $\mathrm{Kp}=\mathrm{Kc}$
b) $\mathbf{K p}=\mathbf{K c}$ * $(\mathbf{R T})^{-3}$
c) $\mathrm{Kp}=\mathrm{Kc} *(\mathrm{RT})^{-5}$
d) $\mathrm{Kp}=\mathrm{Kc} *(\mathrm{RT})^{3}$
e) $\mathrm{Kp}=\mathrm{Kc} *(\mathrm{RT})^{5}$

