Notre Dame University Faculty of Engineering Previous Exams

CEN203 Mechanics of Materials Exam 2 – Spring 2010

Contacts:

Joseph Hakmeh: 03 688 479

Joseph Matar: 70 158 443

1] What is the pH of the solution prepared by mixing 25 mL of 0.024 M HF with 15 mL of 0.15 M NaF? Ka(HF)= 1.5×10^{-4}

2] Determine the pH of 0.15 M benzoic acid (C₆H₅COOH) Ka(benzoic acid)= $7x10^{-3}$

a) 2.06	
<u>b)</u> 1.49	
c) 4.22	
d) 7.00	
e) 3.11	

3] Calculate the pH at the halfway point for the titration of 100 mL of 0.1 M ethylamine $(C_2H_5NH_2, Kb=4.2x10^{-4})$ against 0.2 M nitric acid (HNO₃).

4] If 10 mL of 0.2 M NaOH is added to 20 mL of 0.25 M acetic acid (CH₃CO₂H, Ka=1.8x10⁻⁵), what is the pH of the resultant solution?

5] For the reaction: $2Cl_2(g) + 2H_2O(g) \leftrightarrow 4HCl(g) + O_2(g)$ at 600°C Kp=18.0 atm.

A system contains 2.0 atm $Cl_2(g)$, 2.0 atm $H_2O(g)$, 4.0 atm HCl(g), and 1.0 atm $O_2(g)$ at 600°C. Which one of the following statements is correct?

- a) Net reaction will occur from left to right
- <u>b)</u> $K_c = K_p \cdot RT$
- c) Net reaction will occur from right to left
- d) No net forward or reverse reaction will occur

6] The solubility of magnesium carbonate (MgCO₃) in water at 20°C is 0.0089 mol/l, calculate Ksp for the salt.

a) 4.1x10⁻⁴
b) 5.6x10⁻⁶
c) 7.9x10⁻⁵
d) 2.9x10⁻⁶
e) 7.8x10⁻⁹

7] What mass of NH₄Cl (MM= 53.5 g/mol) must be added to 0.5 L of 0.45 M NH₃ to prepare a buffer solution with pH of 10.55? Assume no variation of volume, $Kb(NH_3)=1.4x10^{-4}$

a) 9.4 g	
<u>b) 4.7 g</u>	
c) 3.5 g	
d) 7.6 g	
e) 6.2 g	

8] Imagine that the temperature is decreased for the following equilibrium

 $2SO_2(g) + O_2 \leftrightarrow 2SO_3$

 Δ H>0 endothermic

What effect would be expected?

- a) No shift in the equilibrium occurs
- b) The equilibrium shifts to the right
- c) The equilibrium shifts to the left
- d) No enough information to answer

9] In a titration, 20 mL of HCl requires 32 mL of 0.5 M $Mg(OH)_2$ for complete neutralization. Calculate the molar concentration of acid.

10] Predict whether an aqueous solution of NH₄F is

 $Ka(HF)=3.5x10^{-4}, Kb(NH_3)=1.8x10^{-5}$

<u>a) acidic</u>

- b) basic
- c) neutral
- d) no enough information to answer

11] Kp= 3.1×10^{-8} for $2H_2S(g) \leftrightarrow 2H_2(g) + S_2(g)$, what is the equilibrium partial pressure of S₂ if H₂S, initially at 0.5 atm and H₂, initially at 0.01 atm, are allowed to come to equilibrium?

a) 8.8x10⁻³
b) 1.3x10⁻³
c) 7.75x10⁻⁵
d) 3.1x10⁻⁶
e) 2.85x10⁻⁴

12] Consider the reaction : $CH_4(g) + 2O_2(g) \leftrightarrow CO_2(g) + 2H_2O(l)$

Which of the following causes the equilibrium shown to shift to reverse (left) direction?

a) removal of CH₄

- b) removal H₂O
- c) addition of CH₄
- d) decreasing the volume of the container
- e) none of these

13] The percent dissociation is 4.45% in a 1 M solution of ethylamine (CH₃CH₂NH₂), calculate Kb?

14] What is the solubility of BaF_2 in 0.15 M NaF. $Ksp(BaF_2)=1.7 \times 10^{-6}$

a) 1.7x10⁻⁶
b) 2.7x10⁻⁵
c) 6.8x10⁻⁶
d) 1.3x10⁻³
e) 7.56x10⁻⁵

15] A reaction mixture was prepared by mixing 0.2 mol SO₂, 0.2 mol NO₂, 0.15 mol NO and 0.15 mol SO₃ in a 5 litre reaction vessel. At 260°C, Kp=0.25 for

 $SO_2(g) + NO_2(g) \leftrightarrow NO(g) + SO_3(g)$

What is the equilibrium concentration of SO₂?

<u>a) [SO₂]=0.0466</u>

- b) [SO₂]=0.0366
- c) [SO₂]=0.233
- d) [SO₂]=0.175
- e) [SO₂]=0.2

Bonus:

Which equation correctly describes the relationship between Kp and Kc for the following reaction?

eci

S.C

- $4Fe(s) + 3O_2(g) \leftrightarrow 2Fe_2O_3(s),$
- a) Kp=Kc
- **b) Kp=Kc** * (**RT**)⁻³
- c) Kp=Kc * $(RT)^{-5}$
- d) Kp=Kc $* (RT)^3$
- e) Kp=Kc * (RT)⁵